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Abstract
Multi-object tracking in dense scenes has always been a major difficulty in this field. Although some existing algorithms
achieve excellent results in multi-object tracking, they fail to achieve good generalization when the application background
is transferred to more challenging dense scenarios. In this work, we propose PTDS(Pedestrian Tracking in Dense Scene)
CenterTrack based on the CenterTrack for object center point detection and tracking. It utilizes dense inter-frame similarity to
perform object appearance feature comparisons to predict the inter-frame position changes of objects, extending CenterTrack
by using only motion features. We propose a feature enhancement method based on a hybrid attention mechanism, which adds
information on the temporal dimension between frames to the features required for object detection, and connects the two
tasks of detection and tracking. Under the MOT20 benchmark, PTDS CenterTrack has achieved 55.6%MOTA, 55.1%IDF1,
45.1%HOTA, which is an increase of 10.1 percentage points, 4.0 percentage points, and 4.8 percentage points respectively
compared to CenterTrack.

Keywords Multi-object tracking · Joint detection tracking paradigm · Feature fusion · Dense pedestrian detection ·
Anchor-free detection

1 Introduction

Multiple Object Tracking (MOT), as a mid-level computer
vision task, is the basis formany high-level tasks such as pose
estimation [1], action recognition [18], and behavior analy-
sis [28]. It aims to locate the trajectories of multiple objects
consecutively in video frames. Meanwhile, compared with
single-object tracking, multi-object tracking not only faces
challenges in the number of objects, but also makes original
identity preservation more difficult due to frequent occlu-
sions, similar appearances, and interactions among multiple
objects.

In multi-object tracking tasks, pedestrians are usually the
center of attention in video scenes, which makes detect-
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ing and tracking them a fundamental problem that needs to
be studied in computer vision. Furthermore, compared with
other visual objects, pedestrians, as typical non-rigid objects,
are ideal samples to study multi-object tracking problems
[14]. However, the complexity of this task depends on occlu-
sion, erraticmotion, and visual similarity of the pedestrians to
be tracked, and remains an open area of research [32]. As the
situation of large-scale dense pedestrians becomes more and
more common, due to the sudden increase of object density,
trackers not only face challenges in object detection but also
the occurrence of identity transitions in the trajectory gen-
eration process that is becoming more and more frequent,
as shown in Fig. 1. The vast majority of existing methods
[46, 48, 50, 59] do not specifically focus on the pedestrian
tracking problem in dense scenarios, so when these methods
are transferred to such scenarios, they do not achieve good
generalization.

CenterTrack [59], based on the anchor-free keypoint-
based object detection network CenterNet [57], exhibits
an excellent balance in tracking performance and train-
ing/inference cost, making it suitable for a wide range of
application scenarios. Specifically, CenterNet, as a detec-
tion network, models the category and location of an object
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Fig. 1 We compare human tracking in different density scenarios, including TAO [13], KITTI [16], MOT15 [23], MOT17 [29]. Moreover, after
the scene becomes more complex, more identity switches and missed detection problems will arise

by capturing the object’s heat map, size, and center point
position error. To associate objects across frames, Center-
Track incorporates an inter-frame displacement regression
branch into the regression head of CenterNet to predict
object position changes in the time dimension. This structural
simplification streamlines two key steps of detection-based
tracking schemes. First, in object detection, historical infor-
mation of each object from the previous frame is included
in the corresponding heat map, enabling the tracking model
to directly access relevant information within the cluster.
Second, the data association method establishes connec-
tions between the same objects in the previous and current
frames through predicted displacement vectors. However,
in dense scenes, locating an object’s center point becomes
more complex, and the heat map rendering method inher-
ited from CornerNet [22] may lack robustness. Additionally,
simple adjacent frame displacement prediction struggles to
handle frequent intersections and occlusions, leading to iden-

tity switching and object trajectory mismatch problems.
Despite being a multi-object tracking algorithm under the
joint detection and tracking paradigm, CenterTrack’s track-
ing effectiveness still heavily relies on the detection model
[10].

In this paper, to solve the above-mentioned specific prob-
lems, we propose a network for pedestrian tracking in
dense scenes using re-identification features and feature
enhancement methods, named PTDS(Pedestrian Tracking
in Dense Scene) CenterTrack, which is designed based on
CenterTrack. We first improved the detection method of
key points in heatmaps and redesigned the center point
rendering method originally inherited from CornerNet to
obtain more accurate positioning for object detection in
dense scenes. Then, we design a simple re-identification fea-
ture extraction network, which extends the original tracking
method in Centertrack that only uses the object displacement
between frames for data association. After that, we design a
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deformable convolution-based feature enhancement module
inspired by the pose estimation network PoseWarper [5] and
combine it with the attention mechanism of spatiotemporal-
level fusion. This module converts the feature differences of
adjacent frames into the offset of each element for feeding
the deformable convolution kernel through a designed hybrid
attention mechanism network and then uses deformable con-
volution to extract features from adjacent frames. Finally, we
superimpose the extracted features on the current frame fea-
tures for feature enhancement.

We summarize the contributions as below:

1. We propose a novel heatmap acquisition method to
improve object center point detection, enhancing the
model’s accuracy in locating object positions during
training.

2. We develop a low-computing power re-identification fea-
ture extraction network that utilizes a method similar to
TraDeS [48] to obtain pixel-level information between
frames and inter-frame displacement of objects.

3. We introduce a feature enhancement method based
on a hybrid attention mechanism, integrating temporal
dimension information between video frames into object
detection features.

2 Related works

Most of the excellent multi-object tracking methods fol-
low a detection-based tracking paradigm, which first detects
objects in each frame and then associates objects with iden-
tities. We classify existing methods into two categories by
whether the network models both detection and tracking
tasks simultaneously. We discuss the methods under these
two different paradigms and compare them with our pro-
posed network. In addition, since we also focus on object
detection in dense scenes and the application of the attention
mechanism in feature enhancement, the object detection and
attention mechanism used in multi-object tracking are also
discussed.

2.1 Keypoint-based object detection

From the perspective of encoding object category and loca-
tion, the object detection algorithms based on deep convo-
lutional neural networks can be roughly divided into two
categories: anchor-based [11, 15, 17, 26, 34, 36, 51] and
anchor-free [21, 22, 41, 57, 58] methods. The detection
network used in this paper ismainly the object detection algo-
rithm based on key points in an anchor-free style. Thus, the
algorithm is transformed into a standard key point estimation
problem. According to the spatial layout of the key points,

two categories emerge for this type of algorithm: edge-point-
based and center-point-based object detection models. It is
worth noting that some detectors also apply both contour and
center points to the samedetectionmodel.Among them,Cen-
terNet used a simple but effective method to model an object
as the center point of a bounding box. Through the object
size and the center-point offset obtained by regression, Cen-
terNet has become more widely applicable to a variety of
other tasks, such as pose estimation and 3D object detection.

2.2 Separatemodel for detection and tracking

In recent years, detection-based tracking [6, 7, 38, 45, 47,
52] has been the mainstreammethod inMOT. The detection-
based tracking method advocates that: firstly, the existing
detectionmodel is used to generate the detection results under
each frame; after that, an additional re-identification model
is used to extract the appearance features of each detection
or a motion model is used to directly predict the inter-frame
motion state of objects; finally, the correlationmatching algo-
rithm is used to complete the data association step, and the
complete trajectory result is obtained. In the detection-based
tracking paradigm, there are a large number of multi-object
tracking algorithms that apply probabilistic inference mod-
els. In the case of linear systems and Gaussian distributed
object states, theKalman filter proved to be the best estimator
[35]. SORT [6] uses aKalman filtermodel to track the bound-
ing box of each object and associates each bounding box
with the largest overlap in the current frame through a binary
matching algorithm. DeepSORT [47] utilizes deep convolu-
tional neural networks to extract the appearance features of
each tracked object to enhance coverage-based association
methods inSORT. In addition, in the detection-based tracking
paradigm,more andmore algorithms have started to focus on
the robustness of data association. Schulter et al. [38] pointed
out that by representing the matching optimization problem
as a differentiable function for backpropagation, the model
can learn features related to data associations. There are also
methods [7, 45, 52] that treat each detection result as a node
in a directed graph and describe the basic data association
problem as a graph optimization problem with a cost vector.

2.3 Joint model for detection and tracking

The methods of joint detection and tracking [3, 30, 33, 46,
54, 56, 59] are rapidly emerging in this field due to their
advanced structure, and its re-examination of the relationship
betweendetection and trackingmodelswhichhave extremely
high academic value for solving joint optimization. They
integrate the originally completely separated detection and
tracking tasks into the same framework by transforming
the structure of the existing detection model or inserting
it into the tracking model. Zhang et al. [56] leveraged a
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bounding box-based binary matching algorithm for data
association, using the tracked object bounding boxes as addi-
tional region proposals to enhance the model’s detection
ability. Tracktor [3], as the foundation of the joint detection
and tracking method, is a representative algorithm linking
the two methods. Tracktor uses bounding box regression to
directly deliver region proposals containing object identity
information, thereby removing bounding box associations
in previous methods, greatly promoting the development of
joint detection and tracking methods. CTracker [33] con-
catenates pairwise bounding box regression results to predict
object trajectories. In online tracking, researchers have also
made a lot of effort. JDE [46] added the re-identification
branch to the single-step detection model YOLOv3. By
combining the detection model and the tracking model, the
computational cost of the re-identification model was greatly
reduced. CenterTrack [59] adds an inter-frame object dis-
placement regression branch to the keypoint detection model
CenterNet and directly obtains the correlation information
of inter-frame objects through simple and effective means.
FairMOT [54] demonstrated the importance of detection and
recognition tasks for tracking, using an anchor-free method
to disambiguate anchor boxes in extracting region proposals.

Although the detection-based tracking method has always
been the mainstream method in multi-object tracking, it has
two main drawbacks: 1) The separation of the two parts:
detection and tracking is not conducive to the joint optimiza-
tion of the model, and the optimization directions of the two
parts of themodel are inconsistent, and eventually, the overall
model cannot obtain the optimal result globally; 2)Toprovide
an optimization basis for the data association steps, the re-
identification models used in such methods are independent
and require high computational costs,whichgreatly limits the
real-time performance of multi-object tracking algorithms.
Compared with the detection-based multi-object tracking
paradigm, the multi-object tracking algorithm based on the
joint detection and tracking paradigm has better prospects in
both theoretical research and practical application due to its
advanced structure and tracking speed.

2.4 Attentionmechanism

Thehybrid attentionmechanismmethodwe adopted is differ-
ent from the very popular Transformer [42] and self-attention
mechanism [40, 44, 49, 50]. However, it is undeniable that
the Transformer structure has achieved great success in the
field of natural language processing and has been applied to
computer vision-related tasks to capture longer-range depen-
dencies. TransCenter [50] uses dense pixel-level multi-scale
queries in the Transformer dual-decoder network to globally
and robustly infer heatmaps of object centers and correlate
them temporally. TransTrack [40] takes an object query as
input to provide common object detection results and lever-

ages feature frompreviously detected objects to form another
“track query” to discover associated objects on the follow-
ing frames. Different from these methods, we mainly encode
differential features through local correlation weights as well
as channel-adaptive weights and use these cues to improve
the robustness of the feature enhancement module.

3 PTDS CenterTrack

3.1 Overview

In the domain of multi-object tracking, the key processes
involve detection and re-identification. Detection is utilized
to ascertain the location of objects, while re-identification is
employed to link the same identity object across a sequence.
Consequently, multi-object tracking networks encompass
the acquisition and integration of temporal and spatial fea-
tures, while simultaneously engaging in multi-task learning
of detection and re-identification. Given the direct impact
of detection on tracking, these two processes are typically
conducted sequentially. However, while studying more effi-
cient and accurate tracking, this paper also explores feeding
back the part of the tracking information that is beneficial to
detection to the network.

The overall network structure we designed is shown in
Fig. 2, which can be divided into four main parts, namely the
basic feature extraction part, the inter-frame displacement
prediction part, the feature enhancement part, and the data
association part. Firstly, in the basic feature extraction part,
we use the backbone network part of CenterNet to obtain
the basic features of video frames. We elaborate on the pro-
posed method of obtaining heat maps in Sect. 3.2 and apply
it in the basic feature extraction part. Secondly, we removed
the original inter-frame displacement prediction part in Cen-
terTrack and used our proposed re-identification feature
extractionmodule for basic feature transformation. Then, the
cost matrix is constructed based on different similarity mea-
surement methods, and the displacement prediction in the
horizontal and vertical directions is carried out through the
designed displacement template.We describe the inter-frame
displacement prediction part in detail in Sect. 3.3. Thirdly,
the feature enhancement part exists as a way to transform the
inter-frame displacement information in tracking into fea-
tures beneficial for the detection task. We adopt a method
based on a hybrid attention mechanism for implementation,
which is detailed in Sect. 3.4. Finally, we discuss different
data association methods in Sect. 4.4.4.

3.2 Object center point detection in dense scenes

In CenterNet [57], the method for representing the detection
as the object center point can be summarized as an input
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Fig. 2 The overall network structure of PTDS CenterTrack. It can be divided into 4 parts: a) basic feature extraction; b) inter-frame displacement
prediction; c) feature enhancement; d) data association. The location marked by the red box is the main improvement with CenterTrack, which is
explained in detail later

image I ∈ R
W×H×3 mapped to key points on a heat map

Ŷ ∈ [0, 1](W/R)×(H/R)×C , where W is the input width, H is
the input height, the number of channels is 3, R is the output
size scaling ratio, and C is the number of key point types.
During the training process, the ground-truth key points are
transformed into a probability distribution through a binary
Gaussian kernel function:

Yxyc = exp
[

− (x − kx )2 + (y − ky)2

2σ 2
k

]
(1)

and scattered on the heat map Y ∈ [0, 1](W/R)×(H/R)×C ,
where (x, y) ∈ R

2 is the coordinate value of the key point on
the heat map, (kx , ky) ∈ R

2 is the ground truth coordinate
value of the key point, and σk is the standard deviation of the
Gaussian kernel function.

To ensure that the difference between the ground truth of
the heat map and the annotated ground truth remains moder-
ate, it is necessary to add a constraint on the IoU threshold
between them. According to the nature of the Gaussian dis-
tribution, we set three times the standard deviation 3σk under
the Gaussian distribution to describe the effective radius of
the circular area occupied by this probability distribution on
the heat map. According to the analysis of this constraint
relationship for the situations described by [1] and [57], we
considered three corner situations. On this basis, we propose
a new enhanced method for generating the effective radius.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r1 =
[
(H + W ) +

√
(H + W )2 − 4HW 1−IoUth

1+IoUth

]
/2

r2 = (H + W ) + √
(H + W )2 − 4HW (1 − IoUth)

r3 = −(H + W )IoUth +
√

(H − W )2IoU2
th + 4HW IoUth

(2)

Fig. 3 Four cases where the ground-truth bounding boxes of the heat
map overlap with the ones of the annotation. Corner-key-point case 1:
the ground-truth bounding box of the heat map(red, the same below)
covers one of the annotations (black, the same below). Corner-key-point
case 2: the ground-truth bounding box of the heat map is contained in
the annotated one. Corner-key-point case 3: the ground-truth bounding
box of the heat map overlaps with the annotated one. Center-key-point
case: including the above three cases. For the purpose of derivation,
only the case where the constraint is equal to the threshold is shown

In Fig. 3, the black bounding boxes denote the annotated
bounding boxes and the key points on the heat map are
denoted by a circular probability distribution generated with
the effective radius r . The ground-truth bounding boxes of
the heat map are denoted by red bounding boxes. The red
and black bounding boxes are satisfied with the constraint
on the IoU threshold. Overall, the following formula can be
obtained:

Sinter
Sunion

≤ IoUth (3)

where Sinter is the area occupied by the intersection of the
red and black bounding boxes, Sunion is the area occupied by
the union of them, and IoUth is the constrained IoU thresh-
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Fig. 4 The inter-frame displacement prediction module. We adopt a
similar approach to TraDeS [48] and replace the inter-frame displace-
ment regression branch in CenterTrack by re-identifying the embedding

model to obtain inter-frame displacement prediction. However, we use
improved Re-ID feature extractors and different cost matrix calculation
methods

old. Based on this constraint and the description of [1, 57],
the three cases of effective-radius formulas are described in
Eq. (2).

However, we adopted a different generationmethod to fur-
ther simplify this problem from three cases to one. In Fig. 3,
we indicate a case in which the effective radius is generated
when the key points are reduced to only one point, and the
following formula can be obtained:

S1 = (W − r sin θ) · (H − r cos θ) (4)

S2 = W · H − S1 (5)
S1

S1 + 2S2
≤ IoUth (6)

where S1 is the area occupied by the intersection of the
red and black bounding boxes, S2 is the area occupied
by their union, and θ is their offset angle. When sin θ =
W/(

√
W 2 + H2) and cos θ = H/(

√
W 2 + H2), Eq. (6)

becomes an identity, and the effective radius rcenter is
obtained from Eq. (7). The advantages of the proposed gen-
eration method are experimentally explained in Sec. 4.

rcenter =
(
1 −

√
2IoUth

1 + IoUth

)
·
√
W 2 + H2 (7)

3.3 Object inter-frame displacement prediction
based on cost matrix

During tracking, objects often undergo identity changes due
to occlusion or significant alterations in appearance. Directly
initiating a new trajectory from these objects can result in a
plethora of fragments and identity switches. The utilization

of re-identification embedding not only aids in distinguish-
ing similar objects but also establishes a feature repository
for them, laying the groundwork for the continuation of tra-
jectories when occluded objects re-emerge.

The re-identification feature extraction approachproposed
in this paper diverges from the traditional method of acquir-
ing local features for analysis and comparison. Instead, we
construct a high-dimensional embedding model to delin-
eate distinctions between different individuals within the
same class. Initially, we persist with using the fundamen-
tal appearance features obtained by the DLA-34 backbone
network layer in CenterTrack as input for our network layer.
Subsequently, we devise a lightweight re-identification fea-
ture extraction module that interfaces with the backbone
network layer to transform appearance features into high-
dimensional intra-class distinguishing features. The specific
network structure is depicted in Fig. 4, and the corresponding
formula for expressing this content is as follows:

Et = σ(Ft ) (8)

where Ft represents the feature obtained after the t-th frame
image is extracted by the backbone network layer, Et repre-
sents the re-identification embedded feature of the t-th frame
image, σ(·) represents the mapping corresponding to the re-
identification embedded model extraction network in Fig. 5.
In Fig. 5, compared with the general re-identification fea-
ture extraction network, the proposed network removes the
maximum pooling layer, keeps the size of the input features
unchanged, and only increases the number of input chan-
nels. This is because the output of the re-identification feature
extractor on the left is upsampled to the size of the input for
subsequent processing. The method proposed in this article
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Fig. 5 The proposed re-identification feature extraction network. The
network on the left of the figure is a general re-identification feature
extractor, and the right is the improved version proposed in this paper

does not require upsampling operations and can be directly
used to obtain the cost matrix, which weakens the transmis-
sion of errors in the network. In addition, the original ReLU
non-linear activation unit is replaced by SiLU, and additional
convolutional layers are added, to extract more accurate re-
identification information in dense object scenes.

Further, we adopt a similar approach to TraDeS [48], by
re-identifying the embeddingmodel to obtain the inter-frame
displacement prediction to replace the inter-frame displace-
ment regression branch in CenterTrack. In scenes with dense
pedestrians, the dense pixel displacement prediction method
can more accurately capture the running direction and dis-
placement distance of objects. We perform a correlation
operation between the current frame partEt and the previous
frame part Et−τ of the extracted re-identification embedding
model. Unlike TraDeS, we use three different calculation
methods, which are used to judge the correlation of each cor-
responding pixel point. These calculation methods are based
on vector inner product distance, vector cosine distance nor-
malized by feature channel, and vector Euclidean distance,
respectively, and their specific mathematical expressions are
as follows:

Ci, j,k,l = Et
i, j · Et−τ

k,l
T

(9)

Ci, j,k,l = Et
i, j · Et−τ

k,l
T

NormL2(Et
i, j ) · NormL2(E

t−τ
k,l )

T
(10)

Ci, j,k,l =
√

(Et
i, j )

2 + (Et−τ
k,l )2 − 2Et

i, j · Et−τ
k,l

T
(11)

whereCi, j,k,l is the cost matrix,Et
i, j is the embeddingmulti-

dimensional matrix of the frame t , (i, j) is the abscissa index

Fig. 6 The cost matrix. It can be understood as a multi-layer nested
tensor, consisting of m × n tensors of size mn. This tensor is calculated
from inter-frame re-identification features and used for displacement
prediction

and ordinate index ofEi, j respectively,E
t−τ
k,l is the embedded

multi-dimensional matrix of the frame t − τ , (k, l) is the
abscissa index and ordinate index of Ek,l , respectively, (·)T
is the matrix transpose operation.

Equation (9) corresponds to the method of calculating
the cost matrix by using the vector inner product; Eq. (10)
corresponds to the method of the vector cosine distance nor-
malized by the feature channel, where NormL2(·) is the
characteristic L2 norm calculation in the channel direction;
Eq. (11) corresponds to the method of the vector Euclidean
distance, where (·)2 is the square operation at the matrix
element level, not the multiplication operation of the matrix
itself.

Based on the above analysis, a cost matrix (tensor form)
of size ((H/8), (W/8) , (H/8), (W/8)) can be obtained. As
shown in Fig. 6, it can be understood that each element in
the m × n-dimensional matrix is also an m × n-dimensional
matrix, where m = H/8 and n = W/8. Each matrix unit
in Fig. 6, such as c1,1, represents the similarity between the
pixel at the (1, 1) coordinate position of the current frame and
all the pixels at the previous frame, so it has a 2-dimensional
attribute. The other two dimensions are represented by blue
arrows and red arrows, respectively. The blue arrow is the
third dimension of the cost matrix, which represents the
traversal of the current frame to the previous frame in the
horizontal direction. The red arrow is the fourth dimension
of the quantity matrix, which represents the traversal of the
current frame to find the similarity of the previous frame in
the vertical direction.

At last, we follow the processingmethod of the costmatrix
in TraDeS, first convert it into a horizontal difference max-
imum vector and a vertical difference maximum vector, to
predict the horizontal displacement and vertical displace-
ment of each pixel between frames, and then convert these
vectors into probability representations through the softmax
function, and finally, the actual horizontal and vertical dis-
placements of each corresponding pixel between frames are
obtained through the designed displacement template. Tak-
ing the input image size of 512×512 as an example, the size
of the feature map obtained after the feature extraction of the
backbone network is 64 × 64.
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Fig. 7 The feature fusion module. The figure mainly shows the process
of obtaining enhanced features through the feature fusion network based
on the hybrid attention mechanism after combining the inter-frame dis-

placement information and the feature frame difference. The detailed
process can be referred to as Algorithm 1

3.4 Deformable convolutional feature fusion based
on hybrid attentionmechanism

The foundation of multi-object tracking lies in multi-object
detection, yet detection is typically conducted in isolation
without considering tracking cues. As previously mentioned,
we contend that stable and consistent trajectories hinge on
robust detection, and conversely, tracking cues significantly
benefit detection, particularly in scenarios characterized by
frequent occlusions stemming from an upsurge in object den-
sity. The conventional re-ID tracking loss does not align
with the detection loss incurred from jointly training a single
backbone network, and in some cases, it may even impede
detection performance to a certain extent [8]. This is because
re-ID prioritizes intra-class variance, whereas detection is
geared towards accentuating inter-class disparities and min-
imizing intra-class variance.

To better balance the two tasks in one network, and use the
predicted displacement as motion information to guide the
detection module, inspired by the pose estimation network
PoseWarper [5], based on the deformable convolution theory
[12], we apply the object displacement between frames to the
feature maps of the previous frames and perform convolution
operations on them. The obtained new feature map based
on the previous frame and the current frame feature map
are adaptively weighted and summed as the input feature of
regression branches. The overall structure is shown in Fig. 7.

The composition of deformable convolution includes two
elements: first, the element value of the original convolution
kernel; second, the offset of each pixel in the input feature
map, which includes the horizontal direction and the vertical
direction. According to the principle of deformable convo-

lution, it is necessary to generate 2k2 offset values for each
pixel position of the input feature map, where k is the size of
the convolution kernel. Therefore, it is necessary to complete
the mapping process γ (·) of shifting the frame to 2k2 offset
values, and we can directly perform the difference operation
on the equal-sized feature maps between the previous frame
and the current frame to obtain the residual feature maps.
Taking them together with the frame-to-frame displacement
of objects as mapping input allows the model to utilize more
spatio-temporal motion information.

We use the hybrid attention mechanism module to design
thismappingnetwork, the specificnetwork structure is shown
in Fig. 8. We add a channel attention module and a spa-
tial attention module to the input downsampling residual
block and the output residual block, respectively. Through the
channel attention mechanism module, adaptive learning is
performed on the input residual features between frames and
the importance of each channel of the object displacement
between frames to obtain more effective spatio-temporal
information for detection enhancement. Through the spatial
attentionmechanismmodule, the attention points of the local
motion information of the inter-frame residual feature maps
are adaptively learned to obtain more effective inter-frame
difference features.

We add the integrated features of the previous frame and
the basic features of the current frame through the adaptive
weight matrix, the specific form as follows:

F̂
t−τ = Ft−τ � Pt−τ (12)

where Ft−τ is the base feature extracted by backbone layers
for frame t − τ , Pt−τ ∈ R

(W/4)×(H/4)×1 is the heatmap
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Fig. 8 Feature fusion network based on a hybrid attention mechanism.
The red dotted box is the spatial attention mechanism, and the blue
dotted box is the channel attention mechanism

Algorithm 1 Deformable Conventional Feature Fusion
Require: Ft−τ is the base feature for frame t − τ ; Ft is the base fea-

ture for frame t ; Pt−τ is the heatmap for frame t − τ ; CMB(A,B)

is the cost matrix calculation function of feature A and feature B;
concat(A,B) is the feature splicing function; H AM(·) is the feature
fusion network based on a hybrid attention mechanism; DCN (·) is
the deformable convolutional network.

Ensure: F̄
t
is the enhanced features.

1: for τ = 1 : T do
2: OC ⇐ CMB(Ft−τ ,Ft )

3: Ō
D ⇐ concat(OC ,Ft − Ft−τ )

4: OD ⇐ H AM(Ō
D
)

5: F̂
t−τ ⇐ DCN (Pt−τ � Ft−τ ,OD)

6: end for
7: F̄

t ⇐ wt � Ft + ∑T
τ=1 w

t−τ � F̂
t−τ

obtained by the detection model for frame t − τ , under
the problem of this paper, it is only for the classification

of pedestrians, F̂
t−τ ∈ R

(W/4)×(H/4)×64 is the result of the
channel-by-channel and pixel-by-pixel overlay of Ft−τ and
Pt−τ . In addition,� is theHadamardproduct ofmatrices.The
feature enhancement part is to add the integrated features of
the previous frame and the basic features of the current frame
through the adaptive weight matrix, the specific form is as
follows:

F̄
t = wt � Ft +

T∑
τ=1

wt−τ � F̂
t−τ

(13)

where, wt ∈ R
(W/4)×(H/4)×1 is the adaptive weight matrix

for the current frame, wt−τ is the adaptive weight matrix for
the previous frame(

∑T
τ=0 w

t−τ = 1), T is the number of pre-
vious frames used. In addition, the adaptive weight matrix is
obtained by two sets of convolutional layers and the softmax
function. To express the steps of feature enhancement more
clearly, Algorithm 1 is used here to show the related process.

3.5 Loss function

The overall loss of the PTDS CenterTrack can be defined as
follows:

L = Ldet + Lidp + L f f (14)

where Ldet is the 2D detection loss in CenterNet [57], Lidp is
the inter-frame displacement prediction loss, and L f f is the
feature fusion loss based on the hybrid attention mechanism.

In terms of displacement prediction, the re-ID feature
extraction network is the only learnable part, so its train-
ing objective is to learn an effective re-ID embedding. The
loss of this part is calculated by the logistic regression in the
form of the focal loss [25] as:

Lidp = −1∑
i jkl Yi jkl

∑
i jkl

{
αlog(Ci jkl) ,Yi jkl = 1

0 , otherwise
(15)

where α = (1−Ci jkl)
β . β is the focal loss hyperparameter. If

Yi jkl = 1, an object at location (i, j) at current time t appears
at location (k, l) at previous time t−τ ; otherwiseYi jkl = 0. It
is worth mentioning that Ci jkl is calculated by softmax from
Ci, j,k,l , which represents the similarity between the current
frame object and itself in the previous frame, and the differ-
ence frombackground and objects at other locations. In terms
of feature fusion, the learnable part is mainly reflected in the
feature fusion network γ (·) based on the hybrid attention
mechanism. L f f is superimposed on the original detection
loss.

4 Experiments and results

4.1 Benchmarks and evaluationmetrics

We organize our experiments on the MOT20 dataset [14]
and use the private detection results branch instead of the
public detection results provided by the MOT20 dataset. It
is worth mentioning that MOT17 [29] is one of the most
widely used datasets in multi-object tracking. Compared
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Table 1 Evaluation on MOT20 test sets

Method Det MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ FP↓ FN↓ IDs↓
OVBT [2] Pub 40.0 37.8 30.5 11.4 30.1 23,368 282,949 4210

DeepSORT [47] Pub 42.7 45.1 36.1 16.7 26.2 27,521 264,694 4470

CenterTrack [59] Pri 45.5 51.1 40.3 30.0 21.3 5450 535,153 15,784

MLT [53] Pri 48.9 54.6 43.2 30.9 22.1 45,660 216,803 2,187

TraDeS [48] Pri 52.4 55.0 44.9 33.4 20.1 75,427 162,675 8320

Tracktor++ [46] Pub 52.6 52.7 42.1 29.4 26.7 6930 236,680 1648

UnsupTrack [19] Pub 53.6 50.6 41.7 30.3 25.0 6439 231,298 2178

TBC [37] Pub 54.5 50.1 – 33.4 19.7 37,937 195,242 2449

GNNMatch [31] Pub 54.5 49.0 40.2 32.8 25.5 9522 223,611 2038

SP-CON [43] Pub 54.6 53.4 42.5 32.8 25.5 9486 223,607 1674

TransCenter [50] Pri 58.5 49.6 43.5 48.6 14.9 64,217 140,019 4695

PTDS CenterTrack Pri 55.6 55.1 45.1 36.9 17.4 50,589 170,933 8242

Bold marks indicate optimal results, italic indicate suboptimal results

withMOT20, there are twomain differences: first, compared
with the MOT17 scene, the pedestrian density in MOT20 is
greatly increased, and the occurrence of occlusion and over-
lap between objects is higher; second, the scenes involved in
all video sequences in the test set of MOT17 are the same
as the training set, while the two video sequences MOT20-
06 and MOT20-08 in the test set of MOT20 do not have the
same or similar scenes in the training set, that is, the scenes of
MOT17 in the training set and the test set belong to the same
source, while the MOT20 is heterogeneous, so the detec-
tion and tracking of the MOT20 test set is more difficult. In
addition, this paper uses the annotated samples of the whole
body and visual part in the CrowdHuman dataset [39] as the
pre-training dataset for the detection model, re-identification
feature extraction layer, and feature fusion layer, and the label
content only contains the bounding box annotation of the
objects.

We evaluate our method on the test set of MOT20. We
use mAP [9], MODA, and MODP [20] to evaluate the detec-
tion results of the model, which is mainly reflected in the
ablation experiments. At the same time, in the ablation
experiment, we also give the FP and FN values of different
model combinations, these two indicators can more intu-
itively understand the detection effect of the model. In terms
of tracking evaluation, we selected three most popular multi-
objective algorithm evaluation indicators: CLEARMOT [4],
ID Scores [24], HOTA [27]. Among them, CLEARMOT and
ID Scores are currently themost widely used evaluation indi-
cators in academia, and HOTA is a newmulti-object tracking
evaluation indicator proposed based on certain defects of the
above two indicators. Measures the accuracy of multi-object
tracking.

4.2 Implementation details

We use the same variant of DLA-34 as in CenterNet as the
backbone of the overall network. Themodel of this network is
pretrained on the COCO dataset [9] to initialize our model.
We trained our network using the Adam optimizer for 70
epochs, startingwith a learning rate of 3.25e−5. The learning
rate decays to 3.25e−6at the 60th epoch.We set the batch size
to 8. We used some standard data augmentation strategies,
including flipping, scaling, and color transforming. The input
image size is reshaped to 960 × 544, and the feature map
resolution at the regression branch location is 240×136. We
spent about 12h in the training phase, on two RTX3090s.

4.3 Results

We finally validate the performance of our proposed network
under the MOT20 benchmark. We compared similar algo-
rithms using public and private detection under the MOT20
test set, and the results are shown in Table 1.

PTDSCenterTrack achieves comparable results with sim-
ilar methods, especially in terms of IDF1 and HOTA. The
excellent IDF1 demonstrates PTDS CenterTrack can effec-
tively reduce the occurrence of identity transition and capture
more complete trajectories. The good HOTA represents
PTDS CenterTrack can achieve a better balance in detec-
tion and tracking tasks. It proves the feature enhancement
approach we adopt can act on both the detection and tracking
parts. Furthermore, PTDS CenterTrack uses simpler feature
extraction networks to achieve comparable tracking results
compared to tracking frameworks using Transformer (e.g.
TransCenter [50]). Our method is slightly weaker under
detectionmetrics such as FN and FP, which we believe is rea-
sonable. This is because the detector we use is very simple
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Fig. 9 Comparison of detection before and after improvement in sub-
way scenes

Fig. 10 Comparison of detection before and after improvement in cross
scenes

and does not incorporate a relatively more complex object
detection network like the Transformer-based method, or
directly apply the SOTA detector. Therefore, we believe that
PTDS CenterTrack can also enhance detection and tracking
performance by utilizing tracking clues when using more
naive detectors.

4.4 Discussion

In this subsection, we rigorously investigate three key
improvements in PTDS CenterTrack through carefully
designedmultiple baselinemethods. These include improved
detection performance, displacement prediction based on
re-identified embedded features, inter-frame feature fusion
based on a hybrid attention mechanism, and experiments on
data association strategies. Furthermore, we discuss the effi-
ciency of the algorithm and give a quantitative analysis in the
summary section of the discussion.

4.4.1 Detection level

We first compared from the detection level, before and after
the improvement of the Gaussian effective radius genera-
tion method, the prediction results of the network’s detection
module in the MOT20 dataset for 8 video sequences, shown
in Figs. 9, 10, 11, 12.

We group them according to the different scenes involved
in video sequences,where the yellowcircles indicate the parts

Fig. 11 Comparison of detection before and after improvement in street
scenes

Fig. 12 Comparison of detection before and after improvement in spe-
cific locations captured

where the improved model detection is better than the base-
line, and the red circles indicate the parts where the baseline
is better than the improved.

Furthermore, we also extract the heatmap of prediction
and center point offset from the regression branches of the
detection model and the combined center point detection
results from both. Here we select a frame in the MOT20-
01 video sequence as an example for illustration, in Fig. 13.
It can be clearly seen that the application of the improved
generation method can obtain a clearer center position in
the regression layer, and the detection results can effectively
reduce the false detection of objects.

We propose a feature fusion module based on the hybrid
attention mechanism, which uses the detection results of the
previous frame to enhance the detection of the current frame,
so we also verify the improvement of this module on the
detection results. Finally, we compare the results of related
improvements with the baseline model we used, in Table2.

4.4.2 Displacement prediction based on Re-ID features

Different from CenterTrack, our designed tracking model
applies Re-ID embedding for intra-class discrimination and
applies this feature to the part of inter-frame displacement
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Fig. 13 Comparison of results in regression layers before and after
improvement. We extracted the intermediate and final results of Cen-
terTrack and PTDSCenterTrackwithin the detection part of the network
respectively, showing that the improved heat map acquisition method
can improve the performance of the detection part. The yellow circled

part indicates that a clearer object center point can be obtained in the
heat map layer, which facilitates the understanding of the object center
features during the training process. The part circled in red is the loca-
tion in the final detection result where false detections are significantly
reduced

Table 2 Object detection
performance comparison
summary

Method AP0.5 MODA MODP Recall Precision F1

Base 64.6 64.6 83.3 65.7 98.4 78.8

Base+GR 71.7 73.8 79.2 80.1 90.3 84.9

Base+GR+ReID+FF 77.6 76.7 81.2 86.5 89.8 88.2

Base+GR+ReID+FFA 78.2 77.3 81.3 86.9 90.5 88.7

*’GR’ is the Gaussian effective radius method.
*’FF’ is the feature fusion method.
*’A’ is the hybrid attention mechanism method
Bold marks indicate optimal results

prediction. Therefore, we also conduct a comparative eval-
uation against tracking models in this improvement. We
obtain the tracking results of the basic model under the orig-
inal network structure of CenterTrack and name the model
’base’. After that, the object inter-frame displacement pre-
diction of the regression layer in CenterTrack is deleted, and
the re-identification unit is used to re-identify and extract
the basic embedding. The displacement is obtained by the
method described in Sec. 3.3. Here we use two different
re-identification network structures in Fig. 5, namely the re-
identification feature extraction network structure used in the
conventional MOT network, and the improved version for it

Table 3 Tracking results of model ’base’, ’base+ReID’, and
’base+(ReID+)’ under MOT20 validation set

Method MOTA↑ IDF1↑ IDs↓
Base 56.3 36.7 15,326

Base+ReID 67.9 69.6 2,472

Base+(ReID+) 68.5 69.6 2,390

Bold marks indicate optimal results

in this paper, and the tracking model formed by these two
networks is named ’ReID’ and ’ReID+’. The tracking results
of the above three models under the semi-validation set of
MOT20 are shown in Table 3.
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Table 4 Tracking results ofmodel ’ReID+cos’, ’ReID+Euclidean’, and
’ReID+dot’ under MOT20 validation set

Method MOTA↑ IDF1↑ IDs↓
Base+ReID+cos 61.5 39.8 50,696

Base+ReID+Euclidean 63.9 39.6 30,701

Base+ReID+dot 67.9 69.6 2,472

Bold values indicate optimal results

From the analysis of the results in the tables, it can be seen
that comparedwith the inter-frame displacement of the direct
regression, the use of re-identification embedding can obtain
higher MOTA and IDF1, which are increased by 20.6% and
21.7%, respectively. The number of identity switches(IDs)
dropped by 83.9% and 83.9%, respectively. Compared with
using shallow CNN and ReLU activation function (ReID),
using deeper CNN and SiLU activation function (ReID+)
can obtain higher MOTA, which is improved by 0.6 percent-
age points. Among them, the number of identity switches
decreased by 3.31%. Compared with the ReLU activa-
tion function, the SiLU activation function used in the
improved version of the ReID module has certain smooth
and non-monotonic characteristics. The smooth transition
of its derivative near 0 is more suitable for deep CNN
than the ReLU function. Therefore, using the improved
re-identification network can obtain better re-identification
feature extraction.

Further, we also explore the influence of the cost matrix
calculation method on the similarity measure between
frames. We have selected 3 different distance calcula-
tion methods, corresponding to Eqs. (9), 10, and 11, and
named them ’ReID+dot’, ’ReID+cos’, ’ReID+euclidean’.
The tracking results of ’ReID+dot’ is the same asTable 3. The
tracking results of the latter two under theMOT20 validation
set are shown in Table 4.

Through the above results, the tracking results using
cosine andEuclidean distance for similaritymeasure are infe-
rior to the form of matrix multiplication, in which MOTA
drops by 10.6% and 7.1%, and IDF1 drops by 43.2% and
43.5%, respectively. We believe that the reason for this phe-
nomenon is the process of obtaining the cost matrix. In the
experimental model of this paper, both cosine distance and
Euclidean distance will introduce cross-channel features in
the calculation process, which will weaken the differences
between frames by the norm of the respective feature matri-
ces. In the cosine form of the cost matrix calculation process,
the feature matrix norm of the two frames is located in the
denominator position, which normalizes the original differ-
ence, so that the similarity of the pixel points is lowered. In
the calculation process of Euclidean distance, the similarity
of pixel points is neutralized by the square term in the for-

Table 5 Tracking results of model ’(ReID+)+FF’ and ’(ReID+)+FFA’
under MOT20 validation set

Method MOTA↑ IDF1↑ IDs↓
Base+(ReID+)+FF 68.8 70.1 2425

Base+(ReID+)+FFA 68.9 70.7 2304

Bold marks indicate optimal results

Table 6 Tracking results of different data association methods under
MOT20 validation set

Method MOTA↑ IDF1↑ IDs↓
(ReID+)+FFA+(H+L) 68.6 70.1 2,481

(ReID+)+FFA+FB 68.9 70.7 2,304

Bold marks indicate optimal results

mula, and obtaining the similarity representation is also not
as effective as matrix multiplication.

4.4.3 Feature fusion

After completing the prediction of the displacement between
frames, we use this difference information to guide the object
detection of the current frame and use two feature fusion net-
works to perform ablation experiments. One of them uses a
time-series feature fusion structure similar to PoseWarper,
and the other uses a feature fusion network based on a
hybrid attention mechanism. We name them FF and FFA
respectively, and their tracking results on the MOT20 semi-
validation set are shown in Table 5.

From the above results, it can be seen that the feature
fusion layer with the addition of an attention mechanism can
effectively reduce the ID switches by 5.0%, and can effec-
tively improve IDF1by0.6 percentage points.Webelieve that
this is because the feature fusion unit takes the feature frame
difference result as the main input of the network, and the
multi-channel frame difference down-mix attention module
can learn the global correlation lines of each channel, which
is beneficial to utilize the features more effectively.

4.4.4 Data association

This section conducts comparative experiments on data
associationmethods, mainly comparing the "secondary asso-
ciation algorithm" mentioned in ByteTrack [55] with the
feature bank method constructed based on re-identification
embedding in this paper. Here, the two are named as the
’H+L’ and the ’FB’ association method, respectively. The
tracking results obtained by using two different data associ-
ation methods are shown in Table 6.

ByteTrack considers the importance of low-confidence
results to trajectories, so the ’secondary association’ method
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Table 7 Evaluation comparison and efficiency of different improved
models under MOT20 validation set

Model MOTA↑ Para Size(MB) FPS

Base 56.3 19.81M 239.5 17.0

+ReID+FF 68.3 21.15M 253.9 15.3

+(ReID+)+FF 68.6 21.45M 257.6 14.6

+(ReID+)+FFA 68.9 21.74M 261.2 13.2

* The last three rows of methods in the table are suitable for Gaussian
effective radius improvement(GR)
Bold marks indicate optimal results

Table 8 Evaluation comparison of ReIDmodules with different depths
under MOT20 validation set

Method MOTA↑ IDF1↑ IDs↓
ReID(4) 68.0 70.1 2,425

ReID+(5) 68.6 70.7 2,304

ReID+(7) 68.5 70.3 2,321

ReID+(10) 68.3 70.0 2,431

* The number in parentheses indicates the number of convolutional
layers. The above methods all apply the ‘GR’ and ‘FF’ improvements
Bold marks indicate optimal results

Table 9 Evaluation comparison of FF modules with different access
location under MOT20 validation set

Method MODA↑ MOTA↑ IDF1↑
FF 76.7 68.6 70.1

FFA 77.3 68.9 70.7

FFA-i 76.0 68.2 69.8

FFA-o 75.8 68.1 69.7

* The above methods all apply the ‘GR’ and ‘ReID+’ improvements
Bold marks indicate optimal results

is adopted to use the low-confidence results as the tracking
basis. However, it can be seen from the data in the table that
under the tracking framework of this paper, even if the sec-
ondary association strategy is not used, better tracking results
can be obtained. Compared with the ’secondary association’
method, the ’feature bank’ we adopt focuses on objects in
a longer time dimension, and it achieves an improvement
of 0.3 and 0.6 percentage points in both MOTA and IDF1
respectively.

4.4.5 Summary of results

In this paper, the above experimental results and the track-
ing results of the optimal network model combination are
integrated, as shown in Table 10, the bold font indicates
the significant improvement results. Among them, � indi-
cates that the model adopts the corresponding improvement
method or applies this method, and the last line indicates

Fig. 14 The original CenterTrack and the PTDS CenterTrack HOTA
metrics curve

the tracking result under the optimal situation of the network
line. Compared with the original CenterTrack, the improved
network improves by 12.6 percentage points in MOTA, 34.0
percentage points in IDF1, and reduces the number of iden-
tity transitions by 85.0%.

In addition, we also compared the parameter quantities
and model sizes of the improved models. As shown in Table
7, better tracking results are obtained at the cost of increasing
the parameter quantity by 9.06%. In addition,we also verified
the changes in algorithm efficiency. The CenterTrack (base)
model runs the most efficiently, and as our additive improve-
ments increase, the running efficiency decreases. However,
compared to more complex detection and tracking networks
such as TransCenter (8.7FPS), the overall processing speed
of PTDS CenterTrack remains high.
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Fig. 15 Visual tracking results comparison between CenterTrack and PTDSCenterTrack.We select some frames in 6 video sequences in chronolog-
ical order for algorithm comparison. We use yellow circles to denote some areas of improved tracking, and red circles to denote areas of decreased
tracking

Furthermore, we also explored the marginal effects of
improvements to the ‘ReID’ and ‘FF’ parts, as shown in
Table 8. For the ’ReID’ part, we explore further deepening
its network layer (ReID is originally 4 layers, ReID+ is 5
layers), and extend the convolutional layer to a deeper level
of 7 and 10 layers (the network structure is expanded in the
form of ReID+, and applied ’GR’ and ’FFA’) and examined
their impact on tracking accuracy. We have observed that
after increasing the number of ‘ReID+’ network layers, the
tracking effect does not change significantly, and may even
decline. At the same time, such changes will make the train-
ing process longer andmake themodel more likely to overfit.
Therefore, we did not continue to increase the number of net-
work layers in the ‘ReID+’ part.

For the ‘FF’ part, we considered the impact of adding
hybrid attention mechanism modules from different loca-
tions as shown in Table 9. ’FFA’ is a symmetrical hybrid
attention mechanism module added to the input and output
parts of the feature hybrid network. We also consider the
case of adding the attention mechanism only to the input and
adding the attention mechanism only to the output, and name
them respectively’ FFA-i”FFA-o’ (apply ’GR’ and ’ReID+’).
We evaluated the impact of different change methods from
two levels: detection and tracking. We have observed that
when using a unilateral attention mechanism access method,
the performance of both detection and trackingwill decrease,
especially the detection part.

At the same time, we also use the HOTA evaluation stan-
dard to compare CenterTrack and the improved model, as
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Table 10 Summary of ablation
experiment results

ReID ReID+ dot cos Euclidean Feature Fusion Attention MOTA↑ IDF1↑ IDs↓
56.3 36.7 15,326

� � 67.9 69.6 2,472

� � 68.5 69.6 2,390

� � 61.5 39.8 50,696

� � 63.9 39.6 30,701

� � � 68.6 70.1 2,425

� � � � 68.9 70.7 2,304

* ’dot’, ’cos’, and ’Euclidean’ are the three similarity measurement methods
Bold marks indicate optimal results

shown in Fig. 14. We improved by 23, 14, and 29 percentage
points onHOTA,DetA, andAssA respectively.We also show
the visual tracking results of CenterTrack and the improved
model in Fig. 15. It can be seen from the above results that
the PTDS CenterTrack can significantly reduce the number
of identity switches and obtain more accurate detection and
tracking results (Table 10).

5 Conclusions

In this study, we propose a multi-object tracking method
named PTDS CenterTrack, which utilizes re-identification
features to construct a cost matrix for predicting the inter-
frame displacement of objects. Simultaneously, we develop
an inter-frame feature fusion network based on a hybrid
attention mechanism and feed the object displacement infor-
mation back to the detection module, thereby leveraging
tracking cues to enhance detection performance. Addition-
ally, we introduce a novel heat map acquisition method to
improve the learning of object center point features during
the training process. We compared with the baseline and
similar algorithms from various perspectives, and achieved
68.9%MOTA, 70.7%IDF1, and 55.6%MOTA, 45.1%HOTA
on the validation and test set of the extremely challenging
benchmark MOT20, respectively. These results confirm that
the relationship between detection tasks and tracking tasks
extends beyond conventional sequential structures, under-
scoring the significance of tracking cues. Our observations
from ablation experiments demonstrate that the comprehen-
sive utilization of both motion and appearance information
between frames significantly enhances the robustness of
multi-object tracking. Specifically, the addition of a re-
identification branch that focuses on an entire frame to
existing lightweight trackers directly improves multi-object
trackingperformance.Going forward,we aim todelve deeper
into the correlation between detection and tracking tasks
within the MOT community and endeavor to develop a more
efficient joint tracking model.
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